
N89- 2 6 5 8 6
On the Development of a Reactive Sensor-Based Robotic System

Henry H. Hexmoor
William E. Underwood, Jr.

AI Atlanta, Inc.
119 East Court Square
Decatur, GA 30030

(404) 373-75 15

ABSTRACT

Flexible robotic systems for the space applications need to use local information to guide their
action in uncertain environments where the state of the environment and even the goals may
change. They have to be tolerant of unexpected events and robust enough to carry their task to
completion. Tactical goals should be modified while maintaining strategic goals. Furthermore,
reactive robotic systems need to have a broader view of their environments than sensory-based
systems. We offer an architecture and a theory of representation extending the basic cycles of
action and perception. This scheme allows for dynamic description of the environment and
determining purposive and timely action. We are exploring applications of our scheme for
assembly and repair tasks using a Universal Machine Intelligence RTX robot, but the ideas are
extendable to other domains. This paper describes the nature of reactivity for sensor-based robotic
systems and implementation issues we have encountered in developing a prototype.

1. Introduction

Almost every system in our daily life is reactive. They asynchronously accept input and produce
output. This output may be normal or abnormal according to the intended function of the system.
When they are situated in an environment, reactive systems produce responses based on their
intended function and they do this by changing their goals and actions in response to new
recognitions in the environment or shifting situations. Similarly, reactive programs form response
behaviors based on "purposes" of the system within which they are embedded in response to
asynchronous input from the environment. An operating system is a reactive system, whereas a
program that blindly follows a set of instructions is not. Reactive systems developed to this date
are aimed at producing routine, almost reflexive, behavior in an environment. Span of cognition
and perception in these systems is narrow and often does not include an examination of "mental"
states such as changes in goal priorities and long range expectations. We call this sort of reaction
low-level reactivity and contrast it with high-level reactivity concerned with changing goals and
reactive planning. Low-level reactivity might be suitable for small scale agents that are resource
rich and have relatively low impact on the overall activities. On the other hand, intelligent agents
slated for space applications have limited resources and need to react not only in the local sense of
the word but also in a rational manner by building or altering goals or their specifications. This is
required for reasoning in a dynamic problem space.

Most everyday activities are immediate and a myopic view of the world suffices to construct
models of engagement in the world with no internal representation of the world. We argue that one
needs to plan across activities as well as about them and this calls for a model of an agent
interacting with a changing environment capable of adapting its behavior and reasoning at various
levels of abstraction to purposively react. Purposive systems perform actions in relation to their
functional requirements [Kim, 19881. Reactive behavior is needed for improving use of resources
for goal achievement. This model considers directed perception and interruptible cognitive

87

processing in the perception-action cycle. Planning and reflective capabilities are crucial to robust
reasoning agents.

Planning systems can be augmented with levels of abstraction in order to cope with combinatorics
of detailed robot activitity. By carefully limiting the scope of planning to levels of abstraction, it
becomes easier to identify stereotypical circumstances. A characteristic of reactive systems is
hierarchies of activity. This hierarchy is a toolbox metaphor of behavioral skills. At one extreme
the behavior may call for a dexterous manipulator with much sensory information, and at the other
extreme it may provide a sufficing jesticulation behavior with minimal resources. This action
hierarchy provides a degree of responsiveness in the environment. However, the increased
overzealousness may be harmful. Central to the notion of reactivity are the two questions of when
and how to react? An intelligent agent ought to react when the utility of reaction is most favorable
in light of its goals. The concept of utility is used to construct a measure of desirability for courses
of action. An intelligent agent also needs to decide whether to continue with a course of action or
whether new circumstances are amenable to a better course of action. To quantify this, each course
of action is assigned an expectation of completetion which is monitored continously and updated as
new information becomes available. This is tantamount to a feasibility measure of the alternate
actions. Choice of motor and sensory activities is determined by arbitration of action at execution
while courses of action are discriminated by reasoning at higher cognitive levels.

The Nature of Reactivity

To clarify the different types of reactivity required of a system, we discuss various types of
reactivity. We define low-level reactivity as generation of behaviors in response to signals from the
environment and identifj a need for high-level reactivity.

Reactivity at the low level is a response to incremental awareness of environmental variations and
details. The prime facie principle is "do the best you can at the moment". Characteristic of low-
level reactivity is a goal to be satisfied and a tactic (method) for achieving the goal. Robotic
compliant motion is a type of reactivity where f i e motion parameters are determined as the
environmental consttaints are perceived incrementally. An example is sliding along the surface of a
table where the geometry of the table is not fully known and are discovered only by sensing local
surface geometries. Another type of reactivity is to form responses where the environment
including one's resources slowly changes. Activities of the robot can be changed to cope with
small changes in the environment. Tracking an object on a conveyor belt is an example.

Low-level reactivity resembles hill-climbing algorithms and is often not sufficient to guarantee
successful achievement of goals. Pure low-level reactivity may lead an agent to repetitive actions,
undo actions, irreversible traps, or other undesirable situations. We suggest invocation and/or
formation of goals with varying strength in response to environmental signals. Most urgent goals
might be expanded to methods for accomplishing goals. These methods in turn will be presented
to the low-level reactive module for execution. This method of changing goal priorities is a reactive
scheme which will be dubbed high-level reactivity.

If one examines the behavior of reactive systems such as human beings, one finds that they react to
crisis situations, to situations that impact preserving their good condition, property, and products
of their effect, to situations conditined by their profession or role, and to situations that satisfy
theur basic needs. These are all examples of high-level reactivity. Purposive robots in a dynamic
environment will encounter similar situations and need mechanisms for achieving similar behavior.

88

2. Related Work

A number of low-level reactive systems has been developed in the last few years. Brooks [19851
describes an architecture for incorporating control mechanisms of a robot in specialized behavior
units at hierarchies of increasing competence. His recent work has been directed toward building
increasingly smaller agents with evolving patterns of behavior. This approach is not appropriate for
space applications bacause it assumes resource rich environments rather than resource limited.
Vachtsevanos and Hexmoor [19861 present a reactive approach to obstacle avoidance based on
rapid replanning capabilities. Agre and Chapman [19871 advocate a model of interaction with the
environment that is based on local schemas and demonstrate achievement of complex behaviors
without the use of traditional planning techniques using world models. Kaebling [1987, 19881
presents specification languages REX and GAPPS that capture behaviors of agents for parallel
actions and provide definition of constructs with constant bound. Agent behaviors are defined in
various levels of sophisticaction which provides a hierarchy of behavioral choice based on the
scope of available information. Dean and Boddy [19881 present an analysis of time-dependent
planning. They introduce a class of algorithms they call "anytime" algorithms which can be
suspended and resumed with negligible overhead and which will return an answer whenever
terminated. The answers returned improve as a function of time in a well-behaved manner.

A number of planning issues that arise pertaining to reactive systems. For example, reactive
systems can be inefficient planners. Drummond [19881 discusses how overzealous reactive
systems fail. He presents a problem of stacking three blocks where the middle block cannot be put
in place last. He calls this the "B Not Last" (BNL) problem. Plans are expanded in plan nets and
situated control rules are provided to avoid potential traps. Monitoring and sensing the environment
is also problematic. Gini [1985] describe a system that generates expectations of plans by
discovering intents of plan steps. This is used to monitor execution of plans and replan when
errors are fully identified. Her recent work [Gini, 19881 clearly points out that I'rea1:time''
perception is unattainable and planning based on this assumption is problematic. Planners need to
keep track of reasons for plans and their formation in order to reason about and revise them. Very
few teleologically adequate planning systems have been developed. An approach toward this end is
consideration of mental attitudes like intention, desire, and belief. Georgeff [1987] describes such
a need for reactive systems. His work served to demonstrate that intelligent goal-directed behavior
in dynamic environments necessitates basing behavior generation on higher cognitive function such
as intention. Our recent work in [Underwood and Hexmoor, 19891 is another step in this direction
of establishing teleological foundations for planning. Our earlier work uses a schema-based
hierarchical planning model. This model has been used in automatic planning of robotic fabrication
and assembly tasks in airframe manufacturing [Underwood, et al, 1984 and 19881. This approach
allows modification of prior planning constructs to generate new plans.

3. A Reactive Robotic System Architecture

We propose an architecture for low-level and high-level reactivity that is illustrated in Figure 3.1.
The low-level reactive apparatus is similar to previous reactive systems with essential components
of perception and an action arbiter. A novelty of our architecture is incorporation of high-level
reactivity and a supervisory level of planning and reasoning which guides choice of low-level
reactive behaviors.

89

High-level reactivity

Low-level reactivity

S Sense
A Act
P Perceive

- Control - Data Channel
Data flow ACTU AT0 FU

E " h l E N T EFFECTOW
PF(EPROCESSED
SENSmY
INFORMATION SENSOR

Figure 3.1 An Architecture for an Intelligent Reactive Robotic System

The world model and the schema memory are used for both low-level and high-level reactivity.

World model: This component is the database of the perceived environment and contains current
information about location of parts and situation parameters along with time tags. Situations are
robot activities like grasp and parameters are information used to complete the activities. The world
model also contains information about the geometries of solid objects. To preserve internal
consistency, only the perception subsystem adds information into the world model. The world
model is consulted by the action arbiter and the planner. The world model is also intended to
contain information about dynamic environments.

High-Level Reactivity

In this section we describe the objects, structure and mechanisms of high-level reactivity depicted
in the upper portion of Figure 3.1.

Goals must be considered in a reactive system because they arise as a reaction to a situation, as a
result of planning to achieve a goal. Schank and Abelson [19771 suggest a taxonomy of goals that
are useful in automated language understanding. We previously applied this taxonomy in robotic
planning and now find it useful is representing high-level robotic reactivity to situations. Particular
types of goals of interest are as follows:

90

o Achievement goals arise from an agents role or function and have to do with the achievement of
goals associated with that function.

o Preservation goals have to do with preserving or maintaining the good condition of a system, its
possessions, or the results of its achievement goals. For example, P-Condition represents the
goal of preserving optimal operating condition.

o Crisis goals are a special case of preservation goals that arise in response to crisis situations, e.g.
fire.

o Satisfaction goals are goals corresponding to a recurring strong operational need which when
satisfied are extinguished for a time, e.g. , the need for storage of electrical energy.

o Instrumental goals are any goal which facilitate realizing other goals. For example, I-Prep(part,
op) represents the goal of preparing a part for an operation.

o Delta goals are distinguished types of instrumental goals that have to do with a change of state.
For example, D-Prox(part, loc) represents the goal of changing the proximity of a part to location.

Situation-Goal Rules: Situation-goal rules are used to represent the goals that should be achieved
in a particular circumstance. We will discuss various classes of situation-goal rules distinguished
by the class of reaction they generate.

Self-Repa ir or Maintenance React ion8
An example of a situation goal rule in this class is: If malfunction(x), then P-Condition(x). The
interpretation of this rule is that if a malfunction is perceived, then pursue the goal of preserving the
optimal operating condition of x, P-Condition(x).

Threat Avoidance Reactio ns
An example of a rule in this class is: If some natural proceess (or other agent's actions) might cause
a negative change in operating conditions, then consider the goal of blocking the natural process
(or goals of the threating agent).

Another rule in this class is that for preserving possessions or other objects of value. For instance,
if an agent has a tool that is useful for achieving its goals, or it has expended time and energy in
accomplishing an assembly task, and it perceives a situation that threatens its possession or
achievment, then it should consider the goal of preserving possessions or preserving the product of
its efforts.

Reactions Cond ihoned bv the Role of an Aee nt
These rules capture the robotic agent's reactions to situations in which it should respond to achieve
some goal for which it was designed. These situations include requests from other agents.

Reactions based o n Owrational Requirements
And example of a rule in this class is: If Battery-Charge(agent) = low, then S-Energy(agent). This
rule represents a reaction to the situation that an agent's battery charge is low. The agent should
pursue the goal of satisfying this need for electrical energy.

Goal Agenda Manager: High-level reactivity is initiated by the triggering of situation-goal rules that
are monitoring perceived situations that are being passed to the world model from the perceptual
subsystem. When triggered these rules pass their associated goal to a goal agenda manager. The
agenda manager determines the precedence among new goals and goals currently on the agenda.
The precedence of goals is: crisis goals have precedence over satisfaction goals, satisfaction goals
have precedence over achievement goals, and achievement goals have precedence over preservation

. .

91

goals. Since instrumental and delta goals arise in planning for accomplishment of any of the goal
types above, they inherit the precedence of their ancestor goal.

The agenda manager requests that the planner find a plan for achieving the goal at the head of the
agenda. The planner returns an instantiated schema as a sequence of goals, a planbox, or a script.
The agenda manager puts this instantiated schema at the head of the agenda and links it to the
originating goal for this plan. If the goal at the head of the list is not an instantiated script or
planbox, it is still a general subgoal, so the agenda manager will send this goal back to the planner
for refinement. Instantiated scripts and planboxes are called methods. When the goal at the head
of the agenda is an instantiated script or planbox, the agenda manager will send a goallmethod pair,
consisting of the instantiated script or planbox and its ancestor goal, to the action arbiter. The
action arbiter will be discussed in the section on low-level reactivity. However, in this context, the
action arbiter returns a message as tc success for failure in achieving the goal. The action arbiter
will continue to attempt to achieve success until given another goal. The agenda manager must
determine when repeated goal failure amounts to goal blockage. In the case it decides that a goal is
blocked, it creates a goal to remove the blocked goal, puts it at the head of the agenda, and requests
the planner to consider this new goal.

If the situation-goal rules generate a new goal and this new goal takes precedence over a currently
pursued goal, the pursued goal is temporily suspended. A problem that can occur during
suspension is that completed subplans and preconditons can come undone. When the agenda
manager reactivates a previously suspended subgoal, there is a need to check the current situation
against prior achievments to restablish the plan structure.

The goal agenda manager also associates a priority with the goallmethod pairs sent to the action
arbiter. This is needed to interrupt the operations under the control of the action arbiter when a
reaction is required to a goal of high precedence, for example, a crisis goal.

Schema Memory: Schema memory is a data base of all common sense schemas for use by the
planner in composing networks of goals and methods necessary for determining appropriate
cources of action. Schemas contained in this knowledge base are used to compose a hierarchical
plan. Plans constructed from this knowledge are a specification of what to do in the perceived
situation. This is unlike 'expectation-based planners like STRIPS.

There are three types of schemas: scripts, named plans, and planboxes. A script is a plan that has
become routine. Named plans are general plans that have worked previously. Planboxes are a
more general type of script, intermediate between named plans and scripts.

Structure of schema memory is depicted in Figure 3.2. A-Goals and P-goals are associated with
named plans, C-Goals are associated with scripts, S-Goals are associated with named plans and
scripts. Named plans are in turn associated with other D-goals and I-Goals, and Scripts are
associated with Sense-Act-Perceive (S A P) microcommands. S A P s are discussed in the section on
low-level reactivity. D-Goals are associated with planboxes which in turn are associatedwith
SAPs. The leaves of the schema structure are all SAPs.

92

A-Goal P-Goal C-Goal S-Goal

I Named Plans Named Plans Scripts Named plans and Scripts

D&l Goals & Scripts D&l Goals & Scripts SAPs D & I Goal; Scripts & SAPS

0 0 0 I
0

SAPs

0

SAPS

0

SAPS

Figure 3.2 Structure of Schema Memory

Planner: The planner responds to requests from the agenda manager to find a plan for achieving a
goal by searching the schema memory for relevant named plans, planboxes or scripts. It uses the
world model to instantiate these schema and returns them to the agenda manager. The planner
responds to a plan request with a single instantiated schema. If the first element of this schema is
itself a goal, the agenda manager will request a plan for achieving that goal. Thus the plan is
expanded on the agenda. At any point that the schema at the head of the agenda is an instantiated
script or planbox, the agenda manager passes that method and its ancestor goal to the action arbiter,
rather than requesting planning for goals further down the agenda. Thus the planning will be
reactive to situations encountered during execution of the partial plans.

If the planner receives a request from the agenda manager to remove a blocked goal, it will search
for an alternative named plan or planbox or it might respecify the goal by substituting a different
value for a parameter of the goal. For example, if an instrumental goal is blocked, then the planner
might either select a different planbox or substitute a different instrument for this goal. This
captures a typical reaction of an agent who is blocked in achieving its goals. When these alternative
schema for achieving a goal, a a measure of desirability based on performance can be assigned for
selecting among alternatives.

Figure 3.3 illustrates a plan for assembly of two parts as it was expanded on the agenda.

93

~

ASSEMBLE(X,Y)

MATE(X,Y:
1

DPROX(X,Y)

Figure 3.3 Plan for achieving the goal Assemble (X,Y)

Low-Level Reactivity

In this section we describe the structure and mechanisms for low-level reactive behaviors depicted
in the lower portion of Figure 3.1.

Perception: This component is responsible for sensory perception of the current state of the
environment, including the state of the robotic agent. It operates independently and continuously
updates locations of parts and other information. This module must allocate time for processing all
sensory input. When it receives a request for finding the location of a particular part, it time shares
its computational resources to assess the requested location while continuing to process other
sensory information.

Action Arbiter: This component is responsible for generating sensory and motor actions for
reactive behavior. It is provided with a goal to achieve and a method for achieving it. Methods are
instantiated schemas for achieving goals. It may be given a D-PROX goal and a Pickup script or a
PUTAT planbox as a method for achieving D-PROX. Furthermore, methods have distinct phases
of operation. Figure 3.4 depicts the structure of a method. An example of a method is a Pickup
script with the following four phases: open, approach, grasp, lift.

94

Goal: <goal>
Target: <{specification of rela>
History: {executed-succeeded, executed-failed}
Method: Do

Phase 1: <Phase 1 SAP target specification>
Phase 2: <Phase 2 SAP target specification>

Phase n: <Phase n SAP target specification>
......

End
Figure 3.4 Structure of a Method

Sensory, perceptual, and motor actions are packaged into sense-act-perceive (SAP)
microcommands and issued in a control loop with their parameters changing continually. Figure
3.5 shows the structure of a typical S A P . Motor commands to the robot are one of the set {Move,
Open, Close, Pause, and Halt} each with several parameters. Sensory commands are one of the set
{Picture, Imprint, and ForceRorque}. High-level perceptual commands are one of the set {Locate-
Object, WhatMow-Moving}. Targets in a SAP define symbolic relations that need to hold among
objects. These symbolic definitions are constructed using a functional assembly specification
language we are developing [Hexmoor and Underwood, 19891. Simple specifications are
descriptions of unary or binary conditions/relations among object(s). An example of a unary SAP
target is the "condition:open-wide, object:gripper", represented as openwide-gripper. A binary
target is "object 1 :grippper condition:rightside-of objecQ:book*, represented as gripper-rightside-
of-book. Parameters for commands are computed by interpolating intermediate increments based
on the current values of target specifications in the world model. Static information about object
geometry may be found in the world model. These intermediate increments correspond to the
resolution of sensory perception. The threshold of this resolution is a prime factor for successful
interaction in our environments, natual or man made.

Each SAP contains attributes which help in determining its appropriateness to the current situation.
The action arbiter chooses a set of SAPs which have similar goals and methods to the current
goallmethod and places them in a queue, called the S A P Exeution Queue (SAPEQ). These SAPs
are independent of one another. This queue is continuosly monitored for information and resource
requirements. All SAPs whose resource requirements match the currently available resources
become candidates for execution and are placed in the order of their sophistication on another
queue called the SAP Candidate Queue (SAPCQ). The SAP with the highest rating of
sophistication is deployed for excution.

Method: {scripts, planboxes)
Goal: <Goal-type>
Sensory Resources: {vision, tactile,force/torque, ...}
Other Resources: {tools,fixtures,parts, ...}
Target: <(specification of relations}>
Sophistication: <Level>
History: {executed-succeeded, executed-failed}
Repeat

,

-Using world model update parameters, abnormal termination and suucessful termination

-Concurrently transmit sensing commands to sensors and
conditions for current sensory and motor actions for the next increment;

transmit motor action commands to robot with priority and
transmit perceptual commands to perception module with priority;

-Compute status of execution
Until (Status = abnormally terminated or successfully terminated)

Figure 3.5 Structure of a SAP

95

Two varieties of low-level reactivity can be differentiated based on the rate of change of the
situation. First, the situation might be static or unchanged. S A P parameters are updated
incrementally as the environmental contraints are perceived. Compliant motion is an example of
this type of reactivity. Failure of SAPs to achieve the goals of their actions in these situations are
due to limits of resolution of sensory perception and the effectors.

Senondly, the situation might change slowly enough that the situations are well within direct
sensory perception thresholds, so that adjustments of parameters and termination conditions can be
computed. Reactivity in these situations amounts to goal refinement. Each SAP is given the
capability of incrementally adjusting the actions of all actuators, sensors and the perceptual module.
An example of this variety of reactivity is tracking an object on a moving conveyor belt Some refer
to this variety of low-level reactivity as adaptivity.

The situation might change so rapidly that the situations are below the resolution of sensory
perception. Adjustments to parameters in these situations might not be adequate to achieve the goal,
so that new goals might have to be substituted for old ones. In these cases new SAPs will be
selected.

Situation
Chagd
Rapidly

Upon termination of a SAP, status of the SAP is examined in light of the overriding goal, the
method and the changes in the environment. This status is one of the set {terminated normally,
terminated abnormally}. In the special case of a static world, a retrial of the same S A P is issued,
and in case of repeated failure, supervisory levels of control will intervene. Otherwise, depending
on how much the world has changed, SAP queues are reprocessed. Figure 3.6 summarizes these
relations in a decision matrix.

Pick the next
GoaVMethod **I and retry

React2: Update SAPCQ

I SAP succeeded I SAPfailed

No reaction was necessary
** Reacted by changing

*** Probably unrelated

Reactl :First variety of reaction
React2:Second varity of reaction

SAP parameters in-flight

c h ang es

Figure 3.6 Action Arbiter Decision Matrix

Figure 3.7 summarizes the activities of the action arbiter. Note that with the availability of most
information and resources, execution proceeds with the most certain scheme of accomplishing the
task transmitted to the robot. We refer to this as executing at level 1. Otherwise, conditions are
tested for a less certain version of accomplishing the same task.

96

Repeat
-Select the next goal/method
-From schemas select SAPs with similar goals and methods to the current goaVmethod and
put them on the execution queue (SAPEQ)

Repeat
-From the execution queue select SAPS requiring resources similar to currently available

resources and put them on SAPCQ in the order of their sophistication

may not have failed more than once
-Execute the SAP with highest sophistication from the SAPCQ which

-Remove SAP from SAPEQ if SAP failed twice
Until (Empty SAPCQ or Empty SAPEQ or SAP is terminated successfully)

-Empty SAPEQ
-Generate status report and send to agenda manager

Until (no goal/method)
Figure 3.7 Action Arbiter

The action arbiter may receive intermpts from higher levels with three levels of priority. The lowest
priority interrupt will cause a pause in the motor actions. The next higher priority interrupt may
direct the action arbiter to a different goaYmethod queue. The highest priority interrupts may be
sent through the arbiter to the robot to stop an overzealous low-level reactivity. To handle high
priority interrupts a service routine is often necessary. For example, a high priority interrupt
might activate a service routine to grip an object more tightly to prevent it from slipping from the
gripper while the object is being moved. Service routines are types of SAPs and there is a supply
of service routines which are scheduled for execution and are transmitted to the robot with the
highest priority to redirect the activities of all actuators and effectors as well as sensors and the
perceptual module.

4. Implementation Issues

We are using a six degree of freedom Universal Machine Intelligence RTX robot in prototyping
this conceptual design. We are adding sensory capabilities of forcekorque sensing at the wrist, a
vision system with a camera looking down on the workspace, and a tactile sensor at the inside of
the gripper jaws.

The task of spatial reasoning in the perceptual module is by far the most difficult to implement for
real-time reactivity. Vision and tactile sensory preprocessors generate grids of data for
htepretation. Each image needs to be understood individually and correlated with other sensory
data for recognition of situations. One approach to implementation is to use a hierarchical
perceptual processing system, much like a blackboard model of problem solving, where
specialized processing modules intepret data and form perceptual hypotheses for higher perceptual
modules. At the topmost level patterns of perception trigger percept schemas that update the world
model along with a time stamp. Since a reactive system requires efficient perception, one might opt
for additional processing power, but in resource poor space applications this might not be a
feasible alternative. Directed perception and improvements in perceptual algorithms are a more
likely implementation alternatives in resource poor applications.

Implementation of high-level reactivity requires a flexible control framework. This might also be
achieved through a blackboard architecture with a control blackboard [Hayes-Roth 1988,
Underwood, et a1 19881. However, more efficient implementations of this framework will be
necessary to support the real-time requirements of reactivity.

A SAP can be considered as a feedback loop where commands are generated based on the previous
state of the world. Figure 4.1 show a SAP'S feedback loop. In each cycle perception commands

97

are sent to the perceptual module, sensory commands to the sensors, and motor action commands
to the robot controller. The world model is updated and new parameters are computed. As argued
by Gini [19881, it is not realistic to assume rapid perception. With the advent of smart sensors, it is
possible to delegate elementary monitoring tasks to the sensors. This enables inclusion of an
embedded feedback loop within the sensor with faster sampling rates in the order of milliseconds
versus seconds for the outer SAP feedback loop.

Ai Pi SAP Ctrl b
i

Senso
4 - 1

Ta - Target
THi - Threshold at i
4 - 1 World Model at i-1

Figure 4.1 SAP as a Feedback Loop

The sampling rate of S A P S are adjusted for types of motion. Gross motions need lower sampling
rates, versus fine motions where more rapid samplng os required.

5. Summary and Conclusion
Autonomous systems must react and adapt to situations in their environment. Two levels of
reactivity should be distringuished. High-level reactivity to situations is at the conceptual level.
Low-level reactivity is at the sensory, perceptual and motor level. Whereas other considerations of
reactive systems have addressed the latter type of reactivity, we propose an architecture that can
realize both levels.

High-level reactivity can be realized by a continuously active perceptual system, situation-goal
rules that are triggered by perceived situations, an agenda manager that schedules consideration of
new goals in the context of current and pending goals, a schema-based planner that suggests
appropriate patterns of behaviors for achieving goals, and by capabilities for low-level reactivity.

Low-level reactivity adopts the principle of "do the best you can at the moment" and is tantamount
to either adapting a motor action or substituting motor actions at different levels of competence to
accomplish a given tactical goal. Motor acts are adapted to a situation by specifying symbolic
targets for motor acts and adjusting their parameters including their termination conditions. In a
changing environment, methods for accomplishing tasks can change in appropriateness and the
availability of different means of accomplishing the same task affords a higher degree of reactivity.

A significant reaserch direction is to integrate reactive planning with learning capabilities that are
cognizant of effects of action over time. These systems might learn patterns of failure and success
and generalize plans. An extension to reactive systems is to consider multi-agent reactive systems
and have them reason about other agents instantaneous behaviors.

Automation of assembly and repair tasks is difficult and abundant uncertainties indicate flexibility
in adjusting to the environment is necessary, Robotic assembly in space will require robust
systems that can react to situations. Although much of the discussion in this paper has addressed
the domain of sensor-based robotic assembly, the architecture and techniques developed are
applicable to mobile robots, such as the mars rover, and many other space systems that could
benefit from a higher degree of autonomy .

98

References

Agre, P.E. and Chapman, D. (1987), "Pengi: An Implementation of a Theory of Activity", In

Brooks, R. (1985), "A Robust Layered Control System for a Mobile Robot", A.I. Memo 864,

I Proceedings of AAAI 87, pp. 286-272.

I

1 MIT AI laboratory.

Dean, T. and Boddy, M. (1988), "An Analysis of Time Dependent Planning", In Proceedings of
AAAI 88, pp. 49-54.

Drummond, M. (1988), "Situated Control Rules", In the Proceedings of the Rochester Planning
Works hop,

Georgeff, M., Lansky, A.L., and Schoppers, M.J. (1987), Reasoning and p[lanning in Dymamic
Domains: An Experiment with a Mobile Robot", TN 380, SRI International.

Gini, at al, "Symbolic Reasoning as a Basis for Automatic Error Recovery in Robots", TR 85-24,
Computer Science Department, University of Minnesota.

Gini, M. "Automatic Error Detection and Recovery", TR 88-48, Computer Science Department,
University of Minnesota.

Hayes-Roth, B. (1988), "Making Intelligent Systems Adaptive", STAN-CS-88- 1226, Department
of Computer Science, Stanford University.

Hexmoor, H. and Underwood, W. (1989), "An Ontology and Repersentation for Flexible
Assembly", In preparation.

Kaebling, L.P. (1987), "An Architecture for Intelligent Reactive Systems", In Michael P. Georgeff
and Amy L. Lansky, editors, Reasoning about Actions and Plans, pp. 395-410, Morgan
Kaufman Pubishers.

-9 (1988), "Goals as Parallel Specifications", In Procedings of AAAI 88, pp. 60-65.

Kim, S. (1988), "Information Framework for Robot Design", In International Encylopedia of
Robotics, Richard C. Dorf, editor, Wiley and Son Publishers, NY.

Liu, Yanxi andArbib, M.A. (1986), "A Robot Planner in the Assembly Domain", COINS TR 86-
36, University of Mass., Amherst, MA.

Schank, R. and Abelson, R. (1977), "Scripts, Plans, Goals and Understanding", Lawrence
Erlbaum Associates , Inc., Publishers, Hillsdale, NJ.

Underwood, W. and Hexmoor, H. (1989), "Intentional Conepts in Industrial Management and
Engineering", Submitted to The Second International Conference on Industrial and Engineering
Applications of Artificial Intelligence and Expert Systems, Tullahoma, Tennessee.

Underwood, W., MacGreggor, B.K., and Scruggs, R.M.(1984), "Scripts, Plans, Goals and
Robot Planning", Focus on Manufacturing Technology Research, Georgia Institute of
Technology, March 1984.

99

Underwood, W., Hexmoor, H., and Scruggs, R.M. (1988), "Intelligent Task Planning and
Execution for Robotic Control", Technical Report AIAI-WOl, Artificial Intelligence Atlanta, Inc.,
Decatur, Georgia.

Vachtevanos, G., Hexmoor, H., "A Fuzzy Logic Approach to Robotic Path Planning with
Obstacle Avoidance", Proceedings of the International Conference on Control, Decision, Athens,
Greece, 1986.

100

